

STAT 992: Science of Large Language Models

Lecture 2: Emergent abilities, prompting, and in-context learning

Spring 2026
Yiqiao Zhong

Early surprises of LLMs

- **Qualitative change** when we keep scaling model sizes and data
- Proposed in Emergent Abilities of Large Language Models:

An ability is emergent if it is not present in smaller models but is present in larger models.

- Phase transition, difficult to predict

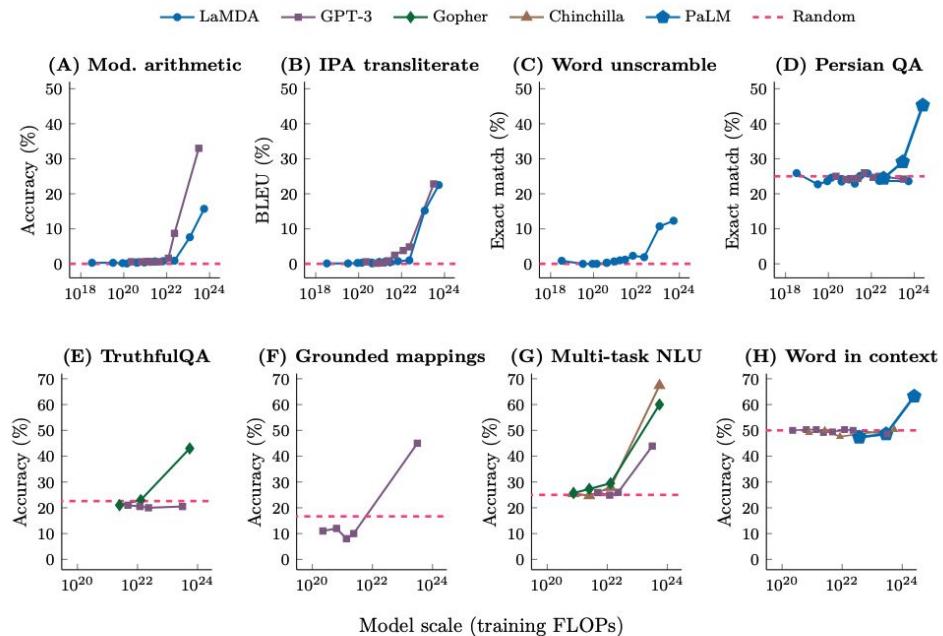


Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.

Prompting & in-context learning (ICL)

- Representative emergent abilities
- How do we adapt a pretrained language model $p_{\theta}(x_{t+1}|x_{1:t})$ for downstream tasks?
 - **Full fine-tuning** (classical ML/Stats approach): find $p_{\theta+\Delta\theta}(x_t|x_{1:t})$ by optimizing over $\Delta\theta$
 - **LoRA**: constrain the rank of the weight matrices in $\Delta\theta$
 - **Prompting**: find a good transformation of the input $x_{1:t} \rightarrow \tilde{x}$ and then use $p_{\theta}(x_{t+1}|\tilde{x})$ without updating the weights
- Common input transformation for prompting: concatenating instruction tokens + providing few-shot demonstration (aka ICL) + question. Example—
 - **Instruction** = “*Classify the sentiment of this review as Positive or Negative*”
 - **Few-shot examples** = “*Tweet: 'I love the new updates!' -> Sentiment: Positive. Tweet: 'This app is so slow today.' -> Sentiment: Negative*”
 - **Question** = “*Tweet: 'The new feature is interesting, but hard to find.' -> Sentiment:*”

The empirical mystery in the GPT-3 age

- GPT-3 is closed-source with an API (no parameter update was allowed), lots of prompting experiments
- LLMs “solve” novel tasks using contexts
 - Following unnatural formats
 - Learning unnatural input-output mapping
- Out-of-distribution (OOD) generalization, but how?

Input: 2014-06-01
Output: !06!01!2014!
Input: 2007-12-13
Output: !12!13!2007!
Input: 2010-09-23
Output: !09!23!2010!
Input: **2005-07-23**
Output: **!07!23!2005!**

in-context examples

test example

model completion

Rong, [Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning](#), 2021

Science for emergence and ICL

Major scientific approaches

- “Computer scientist” approach [C]
 - Start from benchmark models or SOTA models
 - Ablation experiments: applying perturbations to model components, training algorithms, or data
- “Physicist” approach [P]
 - Well-controlled synthetic setting, training small transformer on arithmetic data
 - Focus on nontrivial phase transition, asymptotic analysis (often non-rigorous)
- “Mathematician” approach [M]
 - Manageable, highly-simplified models and training algorithms
 - Typical assumptions: linear attention, one self-attention layer, no layer normalization, specific type of GD, etc
 - Focus on informative error bounds (optimization properties, generalization properties, etc)

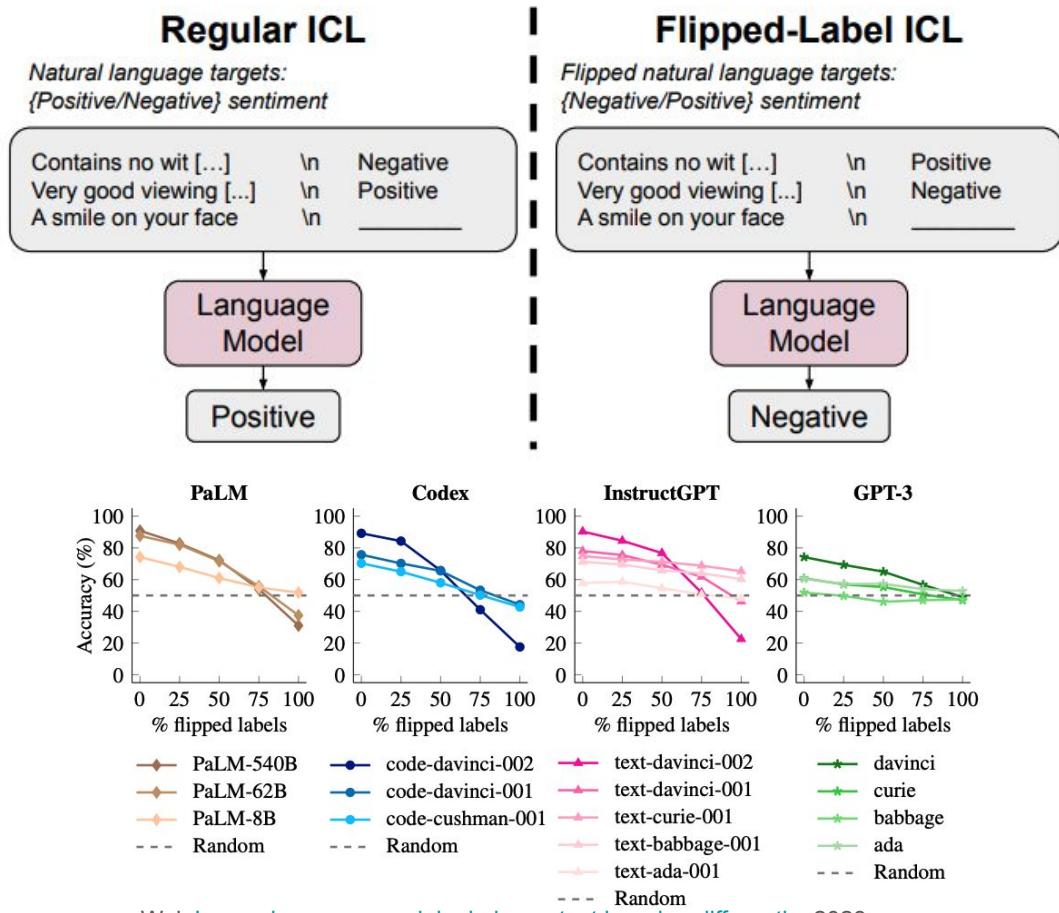
Some clusters of attempts for understanding

- LLM experiments [C]
- Grokking in modular arithmetic [PM]
- In-context (**IC**) linear regression [PM]
- Induction heads in copying tasks [CPM]

	Core Concept	Perspective	Setting	What it Explains?
LLM Experiments	Probing models with flipped labels or corrupted formats.	Behavioral	Informative prompting on pretrained LLMs .	Task inference: Prompting retrieves tasks or learns new tasks
Grokking	Sudden change in memorization & generalization properties	Emergence	Toy models. Mostly train from scratch .	Phase Transitions: How generalization emerges from training
IC Linear Regression	Learning input-output mapping in context	Algorithmic	Toy models. Mostly train from scratch .	Implicit meta-algorithm: ICL emulate gradient descent in context
Induction Heads	Internal mechanism for solving copying $[A][B] \dots [A] \rightarrow [B]$	Mechanistic	Both (Toy models and Pretrained LLMs).	Internal mechanism: how do transformers encode copying ability

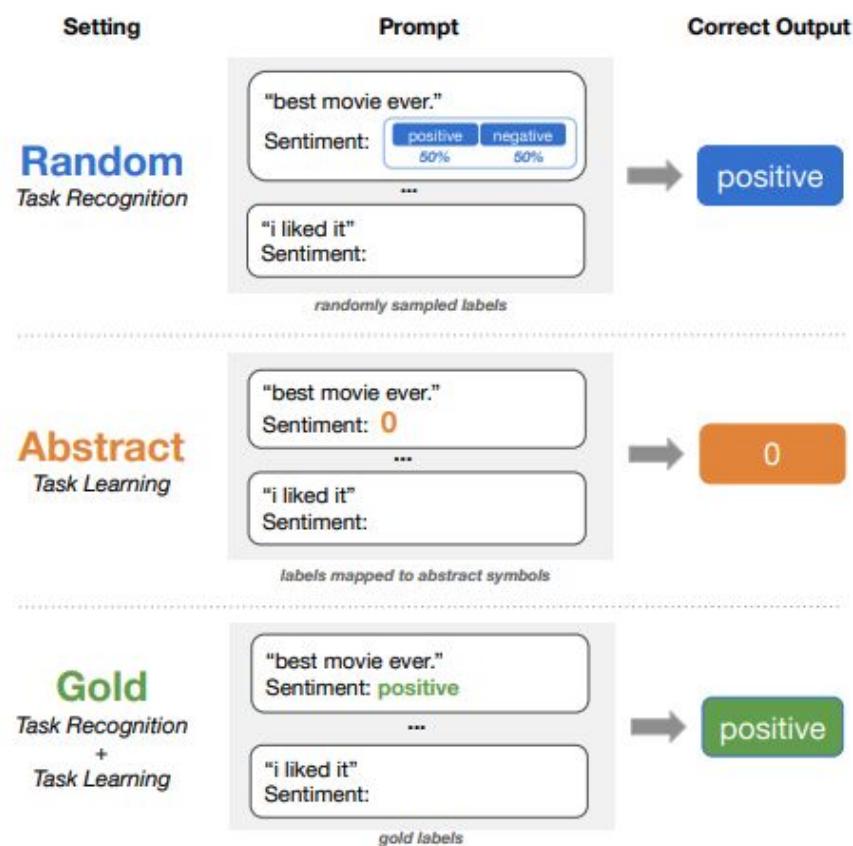
LLM experiments

- Use unnatural or counterfactual IC examples in the prompt
- Conflicting features
 - Prioritize semantic features won't predict flipped labels
 - Prioritize format/abstract features will predict flipped labels
- Similar to Stroop effect in psychology
- Finding: large model scales favor predicting flipped labels



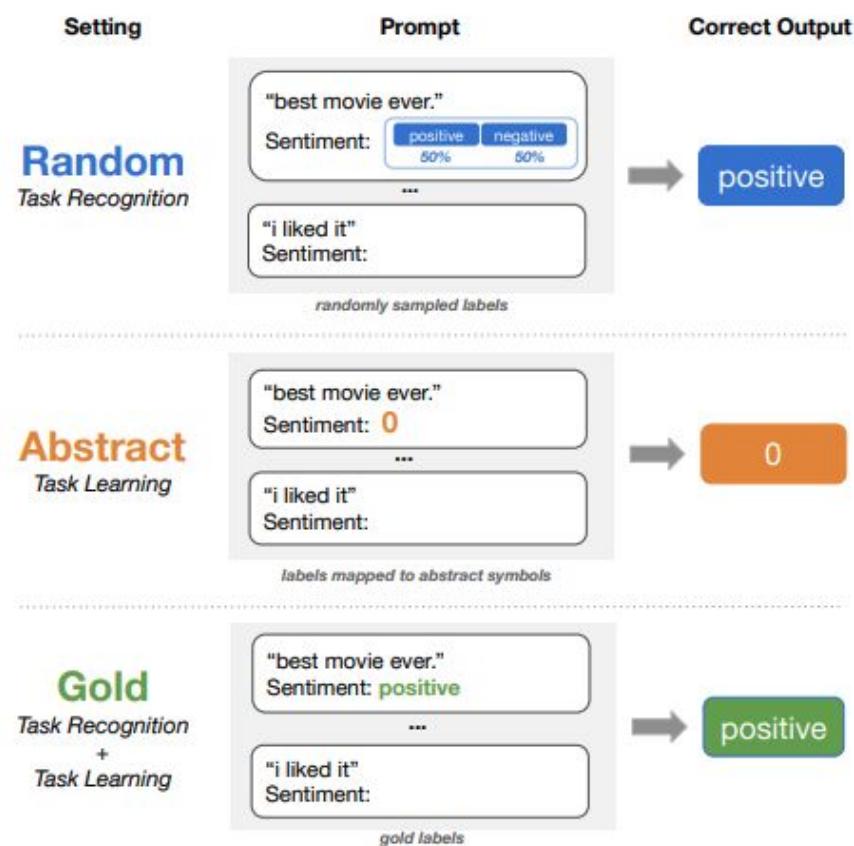
LLM experiments

- Two distinct mechanisms coexist in LLMs
 - Task recognition / task retrieval
 - Task learning
- Models can achieve non-trivial performance with task recognition
- Model scales improve task learning
- Empirical evidence for a novel memorization vs generalization tradeoff



LLM experiments

- Two distinct mechanisms coexist in LLMs
 - Task recognition / task retrieval
 - Task learning
- Models can achieve non-trivial performance with task recognition
- Model scales improve task learning
- Empirical evidence for a novel memorization vs generalization tradeoff



LLM experiments

- An explanation for ICL for task retrieval: the model is doing Bayesian inference over the context [M]
- More IC examples → Posterior distribution concentrates on the right latent concept (e.g., sentiment classification)

$$p(\text{output}|\text{prompt}) = \int_{\text{concept}} p(\text{output}|\text{concept}, \text{prompt})p(\text{concept}|\text{prompt})d(\text{concept}).$$

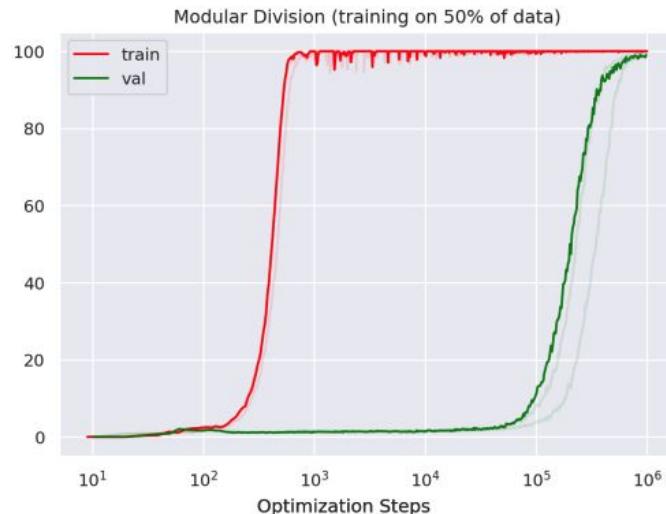
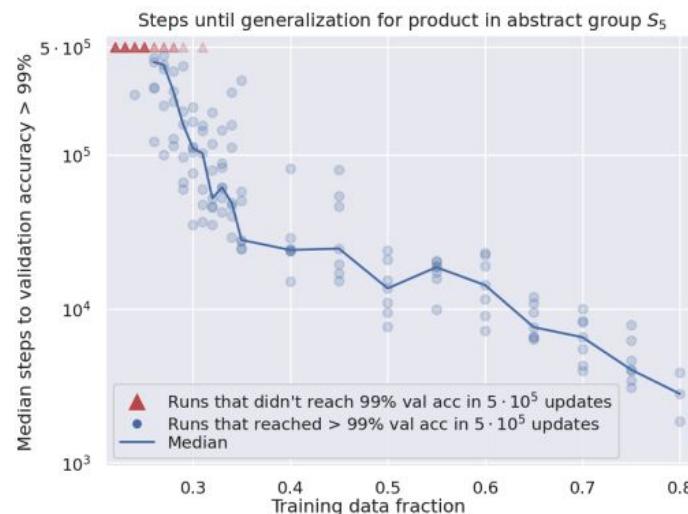
Xie, [An Explanation of In-context Learning as Implicit Bayesian Inference](#), 2022

- It does not explain why two mechanisms—task retrieval and tasks learning—coexist, how are they encoded by the model, why they emerge (especially task learning) under model scaling
- In later lectures, we will see the two mechanisms are mostly attributable to FFN and self-attention respectively

Grokking in modular arithmetic

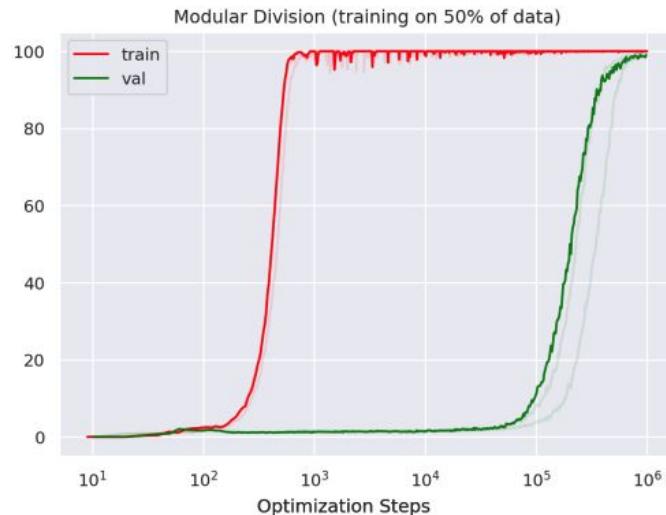
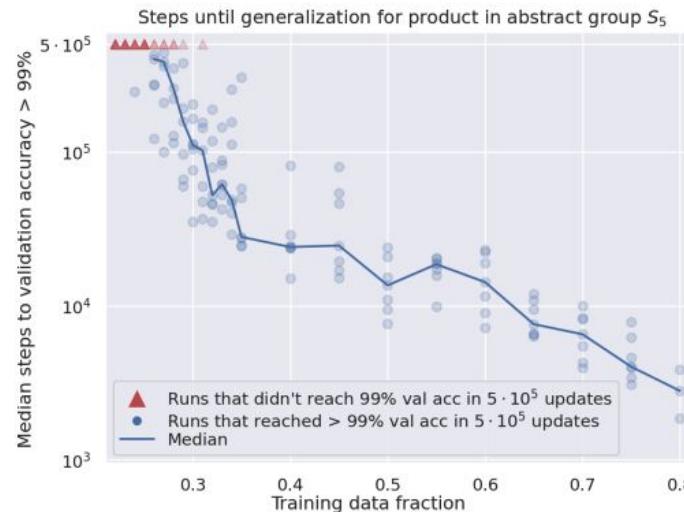
- Motivation: transformers learn certain discrete / math structures at scale, why?
- Training smaller transformers from scratch on arithmetic data, e.g.,

$$a \times b = c \pmod{97}$$



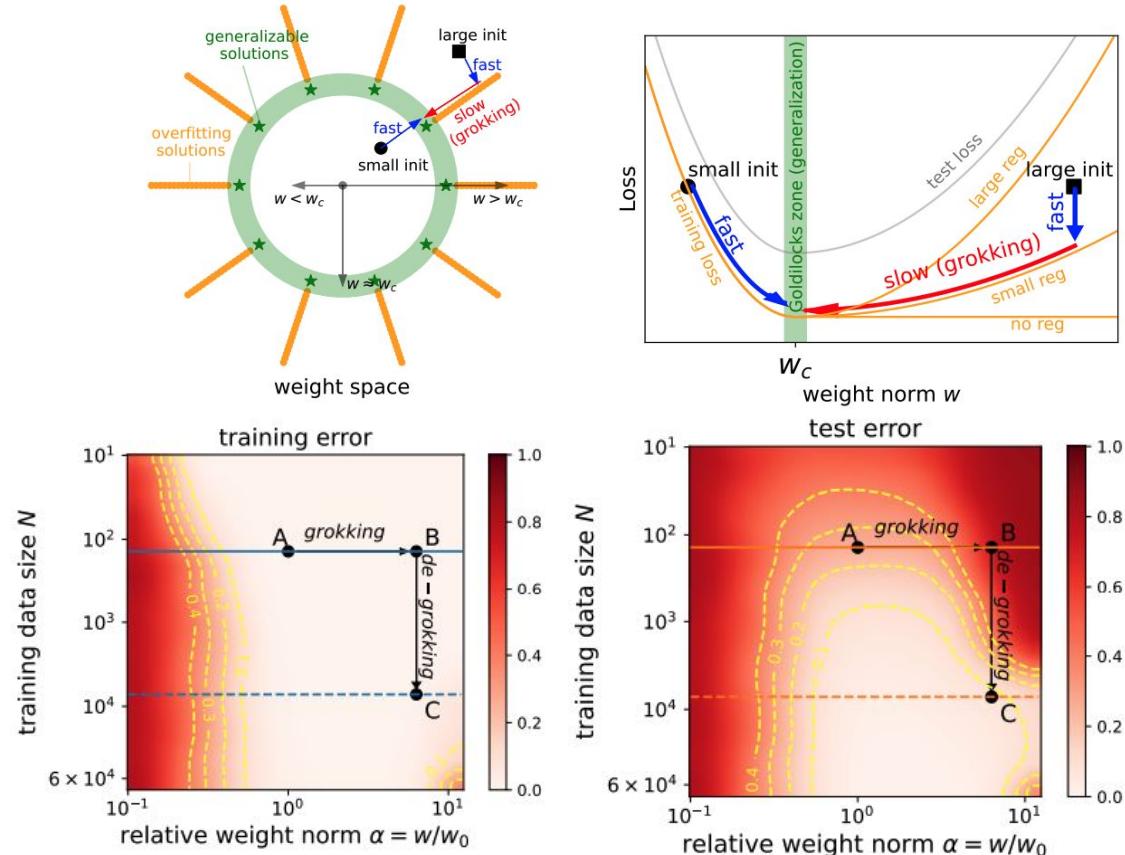
Grokkering in modular arithmetic

- Finding 1: Phase change thresholds: interpolating training data much earlier than generalization
- Finding 2: Small training data size means much more training steps required



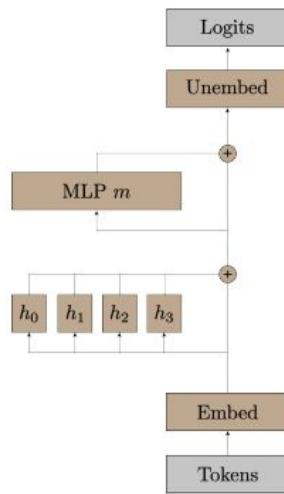
Grokking in modular arithmetic

- Explanation 1: Loss landscape is affected by multiple factors
 - Small vs large initialization
 - Sample size
 - Regularization
- Overfitting solutions consist of almost flat regions, thus slow at generalization
- Existing theory [M] already compared kernel learning regime vs NTK regime

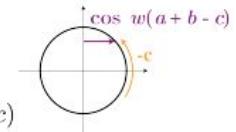


Grokking in modular arithmetic

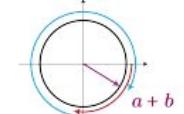
- Explanation 2: mechanistic interpretability (internal representation)
- Model learns to implement algorithms (based on fourier frequency for modular arithmetic) as training progresses
- Circuits (certain model components) are interpretable sub-rules for solving a task
- Further theoretical analysis [M] built upon the finding



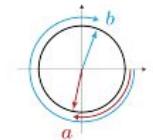
Computes logits using further trig identities:
 $\text{Logit}(c) \propto \cos(w(a + b - c))$
 $= \cos(w(a + b)) \cos(wc) + \sin(w(a + b)) \sin(wc)$



Calculates sine and cosine of $a + b$ using trig identities:
 $\sin(w(a + b)) = \sin(wa) \cos(wb) + \cos(wa) \sin(wb)$
 $\cos(w(a + b)) = \cos(wa) \cos(wb) - \sin(wa) \sin(wb)$



Translates one-hot a, b to Fourier basis:
 $a \rightarrow \sin(wa), \cos(wa)$
 $b \rightarrow \sin(wb), \cos(wb)$



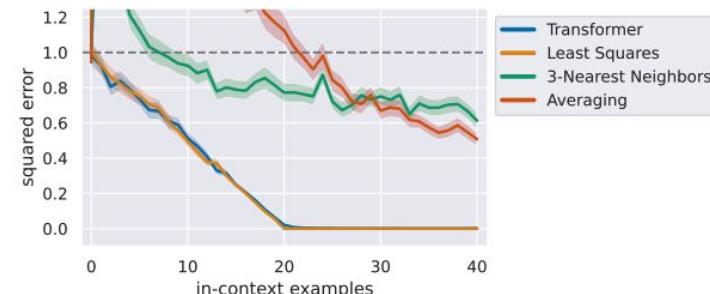
In-context linear regression

- Motivation: A clean setup of ICL without entanglement of natural languages?
- Learning mapping in context
 - IC linear regression (most studied)
 - IC nonparametric regression

$\underbrace{\text{maison} \rightarrow \text{house}, \text{chat} \rightarrow \text{cat}, \text{chien} \rightarrow}_{\text{prompt}} \underbrace{\text{dog}}_{\text{completion}} .$

$$P = (x_1, f(x_1), \dots, x_{k+1}, f(x_{k+1}))$$

- f is a sequence-specific linear function sampled from certain distribution, i.e., the coefficient vector of f is first sampled, then sample IC input-output pairs
- Finding 1: training transformers from scratch yields ICL with near-optimal acc
- Finding 2: somewhat generalize to new function (unseen f during training)



In-context linear regression

- Explanation: linear self-attention emulates gradient descent [P]
- One self-attention layer learns a gradient step to update the residual stream
- Loss function
$$L(W) = \frac{1}{2N} \sum_{i=1}^N \|Wx_i - y_i\|^2.$$
- Gradient step
$$\Delta W = \sum_i \mathbf{e}_i \otimes \mathbf{x}'_i, \quad \text{re-organize}$$
- Theory about training dynamics [M]
 - Explicit formula under simplifying assumption

$$\begin{aligned}\mathcal{F}(\mathbf{x}) &= (W_0 + \Delta W) \mathbf{x} \\ &= W_0 \mathbf{x} + \Delta W \mathbf{x} \\ &= W_0 \mathbf{x} + \sum_i (\mathbf{e}_i \otimes \mathbf{x}'_i) \mathbf{x} \\ &= W_0 \mathbf{x} + \sum_i \mathbf{e}_i (\mathbf{x}'_i{}^T \mathbf{x}) \\ &= W_0 \mathbf{x} + \text{LinearAttn}(E, X', \mathbf{x}),\end{aligned}$$

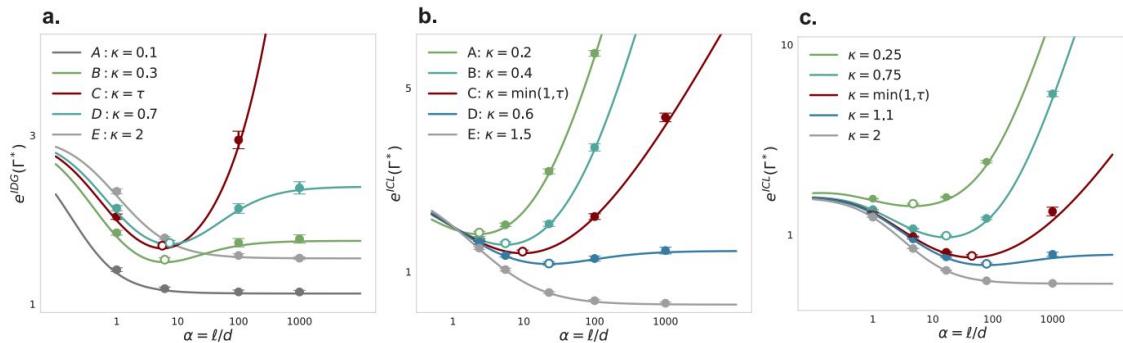
Oswald, [Transformers Learn In-Context by Gradient Descent](#), 2023

Dai, [Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as Meta-Optimizers](#), 2023

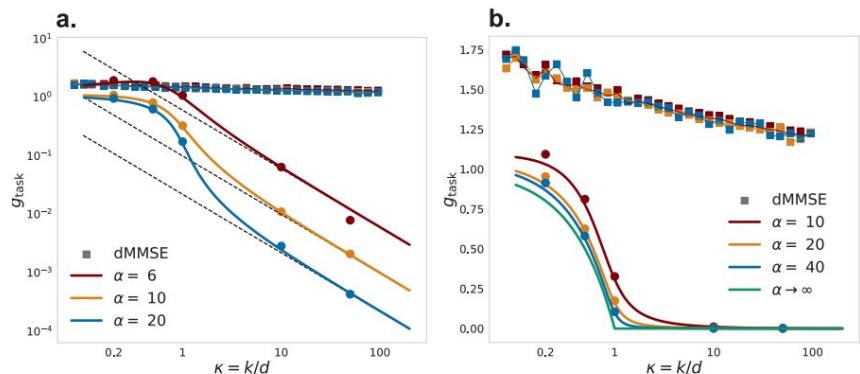
In-context linear regression

- Comprehensive theory (PNAS paper) for one-layer linear self-attention [M]
- Formalizes and analyzes two solutions (task-retrieval solution, task-learning solution)
- Emphasis on the critical role of **task diversity** in phase transition of the two mechanisms

D. ICL and IDG error curves can have non-monotonic dependence on context length

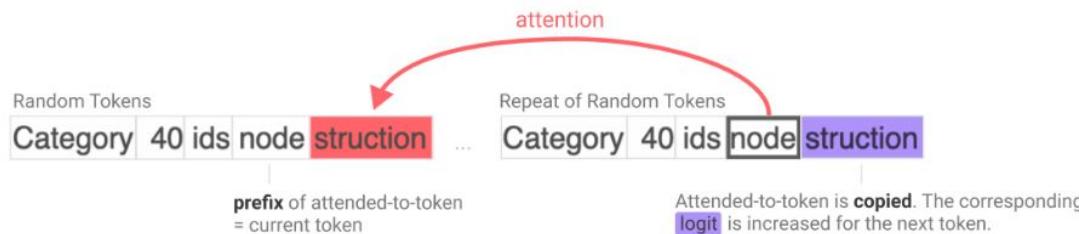


E. Learning transition with increasing pretraining task diversity



Induction heads in copying tasks

- Both verified on large-scale LLMs and synthetic settings [CP] limited [M]
- ICL is attributed to the copying ability [A] [B] ... [A] → [B]
- Pioneered by [Anthropic](#)
 - Model internal attention pattern
 - A clear interpretable mechanism how copying is encoded by self-attention
 - One abstract (non-knowledge) ability critical to matching format, solving math



- Detailed analysis in the next lecture

Do we reach consensus,
or do puzzles remain?

Open problems & research ideas

- Ambiguity in the definition of emergent abilities? What really is emergence / phase transitions? Critique: “[Are Emergent Abilities of Large Language Models a Mirage?](#)”
- Model, data diversity, and training steps may all have impact, suggested by the PNAS theory paper. But analysis is limited.
- Self-attention is viewed as meta-algorithm components capable of implementing certain rules (mechanistic analysis), yet reverse engineering is hard
- In LLMs, the effects of training data is very poorly understood, since it is very expensive to pretrain the model