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Early surprises of LLMs

Qualitative change when we keep
scaling model sizes and data
Proposed in Emergent Abilities of
Large Lanquage Models:

An ability is emergent if it is not
present in smaller models but is
present in larger models.

Phase transition, difficult to predict
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Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model


https://arxiv.org/pdf/2206.07682
https://arxiv.org/pdf/2206.07682

Prompting & in-context learning (ICL)

e Representative emergent abilities
e How do we adapt a pretrained language model po(z:+1|71.1) for downstream

tasks?

o Full fine-tuning (classical ML/Stats approach): find pgag(z¢|x1.4) by optimizing over A¢

o LoRA: constrain the rank of the weight matrices in A¢

o Prompting: find a good transformation of the input x1.; — & and then use py(z;,1|T)
without updating the weights

e Common input transformation for prompting: concatenating instruction tokens

+ providing few-shot demonstration (aka ICL) + question. Example—
Instruction = “Classify the sentiment of this review as Positive or Negative”
o Few-shot examples = “Tweet: 'l love the new updates!’ -> Sentiment: Positive. Tweet: 'This
app is so slow today.' -> Sentiment: Negative”
o Question = “Tweet: 'The new feature is interesting, but hard to find.' -> Sentiment.”



GPT-3 is closed-source with an API
(no parameter update was allowed),
lots of prompting experiments

LLMs “solve” novel tasks using

contexts

o Following unnatural formats
o Learning unnatural input-output mapping

Out-of-distribution (OOD)
generalization, but how?

The empirical mystery in the GPT-3 age

Input: 2014-06-01 .
Output: !e6!01!2014!
Input: 2007-12-13

Output: 112113120071 | In-context
Input: 2010-09-23 examples
Output: !@9!12312010! _
Input: 2005-07-23 test example
Output: !@7!2312@05!

!-— -~ model completion

Rong, Extrapolating to Unnatural Language
Processing with GPT-3's In-context Learning,

2021


https://ai.stanford.edu/blog/in-context-learning/
https://ai.stanford.edu/blog/in-context-learning/

Science for emergence and ICL



Major scientific approaches

e “Computer scientist” approach [C]

o Start from benchmark models or SOTA models

o Ablation experiments: applying perturbations to model components, training algorithms, or data

o “Physicist” approach [P]
o  Well-controlled synthetic setting, training small transformer on arithmetic data

o Focus on nontrivial phase transition, asymptotic analysis (often non-rigorous)

“Mathematician” approach [M]
o Manageable, highly-simplified models and training algorithms
o Typical assumptions: linear attention, one self-attention layer, no layer normalization, specific type of
GD, etc

o Focus on informative error bounds (optimization properties, generalization properties, etc)




Some clusters of attempts for understanding

e LLM experiments [C]
e Grokking in modular arithmetic [PM]
e In-context (IC) linear regression [PM]
e Induction heads in copying tasks [CPM]
Core Concept Perspective Setting What it Explains?
LLM Probing models with flipped labels | Behavioral Informative prompting Task inference: Prompting retrieves
Experiments or corrupted formats. on pretrained LLMs. tasks or learns new tasks
Grokking Sudden change in memorization Emergence Toy models. Mostly Phase Transitions: How
& generalization properties train from scratch. generalization emerges from training
IC Linear Learning input-output mapping in Algorithmic Toy models. Mostly Implicit meta-algorithm: ICL
Regression context train from scratch. emulate gradient descent in context
Induction Internal mechanism for solving Mechanistic Both (Toy models and | Internal mechanism: how do
Heads copying [A][B]...[A] —> [B] Pretrained LLMs). transformers encode copying ability




LLM experiments

e Use unnatural or

counterfactual IC examples in

the prompt

e Conflicting features
o Prioritize semantic features
won’t predict flipped labels
o  Prioritize format/abstract
features will predict flipped
labels

e Similar to Stroop effect in
psychology

e Finding: large model scales
favor predicting flipped labels

Regular ICL

Natural language targets:
{Positive/Negative} sentiment

Flipped-Label ICL

Flipped natural language targets:
{Negative/Positive} sentiment

Contains no wit [...] \n  Negative Contains no wit [...] \n Positive
Very good viewing [...] \n  Positive Very good viewing [...] \n Negative
A smile on your face \n A smile on your face \n
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—4— PaLM-540B —e— code-davinci-002 —+— text-davinci-002 —#— davinci

—+— PaLM-62B —e— code-davinci-001 —+— text-davinci-001 —#— curie
PalLM-8B —e— code-cushman-001 text-curie-001 babbage
- -- Random --- Random text-babbage-001 ada
text-ada-001 - -~ Random
- -~ Random
Wei, Larger lanquage models do in-context learning differently, 2023



https://en.wikipedia.org/wiki/Stroop_effect
https://arxiv.org/pdf/2303.03846

LLM experiments

e Two distinct mechanisms

coexist in LLMs

o Task recognition / task retrieval
o Task learning

e Models can achieve
non-trivial performance with
task recognition

e Model scales improve task
learning

e Empirical evidence for a novel
memorization vs
generalization tradeoff

Setting Prompt Correct Output
["best movie ever.” ]

Sentiment: | W&= e
Rando,m - Lol positive
Task Recognition

“i liked it"

Sentiment:

randomly sampied labels

“best movie ever.”

Aot Eh % - (K

“i liked it”
Sentiment:

labels mapped to ab

“best movie ever.”

GOld [Senﬁment: positive J
Tk Becopeen - Cndl Positive

+
: “i liked it”
Task Leamning [ sigilly

gold labels

Pan, What In-Context Learning “Learns” In-Context: Disentangling Task
Recoanition and Task Learning, 2023



https://arxiv.org/pdf/2305.09731
https://arxiv.org/pdf/2305.09731
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https://arxiv.org/pdf/2305.09731
https://arxiv.org/pdf/2305.09731

LLM experiments

An explanation for ICL for task retrieval: the model is doing Bayesian inference
over the context [M]

More IC examples — Posterior distribution concentrates on the right latent
concept (e.g., sentiment classification)

p(output|prompt) = / p(output|concept, prompt)p(concept|prompt)d(concept).

concept

Xie, An Explanation of In-context Learning as Implicit Bayesian Inference, 2022

It does not explain why two mechanisms—task retrieval and taks
learning—coexist, how are they encoded by the model, why they emerge
(especially task learning) under model scaling

In later lectures, we will see the two mechanisms are mostly attributable to FFN
and self-attention respectively



https://arxiv.org/pdf/2111.02080

Grokking in modular arithmetic

e Motivation: transformers learn certain discrete / math structures at scale, why?
e Training smaller transformers from scratch on arithmetic data, e.g.,

aXb=c mod 97
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OpenAl, Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, 2022



https://arxiv.org/pdf/2201.02177

Grokking in modular arithmetic

e Finding 1: Phase change thresholds: interpolating training data much earlier
than generalization
e Finding 2: Small training data size means much more training steps required
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Grokking in modular arithmetic

Explanation 1: Loss
landscape is affected by

multiple factors

o Small vs large initialization
o Sample size
o Regularization

Overfitting solutions
consist of almost flat
regions, thus slow at
generalization

Existing theory [M] already

compared kernel learning
regime vs NTK regime
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https://arxiv.org/pdf/1812.07956
https://arxiv.org/pdf/2210.01117

Grokking in modular arithmetic

e Explanation 2: mechanistic interpretability (internal representation)
e Model learns to implement algorithms (based on fourier frequency for
modular arithmetic) as training progresses

e Circuits (certain _ o b
. Computes logits using further trig identities: '. ;
model components) Sy

Logit(¢) x cos(w(a + b — ¢))

. [ = cos(w(a + b)) cos(we) + sin(w(a + b)) sin(we)
are interpretable —_— ®
su b_ru |eS for . MLP m Calculates sine and cosine of a + b using trig identities: I,/ T -\.\
sin(w(a + b)) = sin(wa) cos(wb) + cos(wa) sin{wb) f |-
cos(w(a + b)) = cos(wa) cos(wh) — sin{wa) sin(wh) \ jn S

solving a task *
¥ o

e Further theoretical P
I . M b . | t ————— Translat(es c)me-hzm a) b to Fourier basis:

| o bed a —» sin(wa). cos{wa \ /M
anatysis [ ] ul b — sin(wb), cos(wb) '\\ —_/

upon the finding

Nanda, Progress Measures for Grokking Via Mechanistic Interpretability, 2023



https://arxiv.org/pdf/2301.05217
https://arxiv.org/pdf/2407.20199
https://arxiv.org/pdf/2407.20199

In-context linear regression

e Motivation: A clean setup of ICL without entanglement of natural languages?

e Learning mapping in context
o IC linear regression (most studied)
o IC nonparametric regression

_maison — house, E}:at —> cat, chien — \fl\o’g/ . P = (xllf(xl), G /xk+1/f(xk+1))
prompt completion

e [ is a sequence-specific linear function sampled from certain distribution, i.e.,
the coefficient vector of [ is first sampled, then sample IC input-output pairs

= Transformer

= | east Squares

== 3-Nearest Neighbors
= Averaging

e Finding 1: training transformers from
scratch yields ICL with near-optimal acc

e Finding 2: somewhat generalize to new
function (unseen f during training) T W . & &

in-context examples
Garg, What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, 2023



https://arxiv.org/pdf/2208.01066

In-context linear regression

e Explanation: linear self-attention emulates gradient descent [P]
e One self-attention layer learns a gradient step to update the residual stream

e Loss function 1 2 F(x) =(Wo+ AW)x
LW)=on Zl IWa: =il —Wox + AWx
=Wox + Z (ei @ x;) x

e Gradientstep AW = Z e;: ® x;, re-organize
i =Wox + Z e; (xiTx)

e Theory about training dynamics [M] =Wox + LinearAttn (E, X', x),

o Explicit formula under simplifying assumption

Oswald, Transformers Learn In-Context by Gradient
Descent, 2023

Dai, Why Can GPT Learn In-Context? Language
Models Implicitly Perform Gradient Descent as

Meta-Optimizers, 2023



https://arxiv.org/pdf/2306.09927
https://arxiv.org/pdf/2212.07677
https://arxiv.org/pdf/2212.07677
https://arxiv.org/pdf/2212.10559
https://arxiv.org/pdf/2212.10559
https://arxiv.org/pdf/2212.10559

In-context linear regression

D. ICL and IDG error curves can have non-monotonic dependence on context length

b.

e Comprehensive theory =

— A:k=0.1
— B:k=0.3

(PNAS paper) for — cn=t
one-layer linear NN
self-attention [M] \ i

e Formalizes and analyzes S
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https://arxiv.org/pdf/2405.11751

Induction heads in copying tasks

e Both verified on large-scale LLMs and synthetic settings [CP] limited [M]
e [CL is attributed to the copying ability [A] [B] ... [A] — [B]

e Pioneered by Anthropic
o Model internal attention pattern
o Aclear interpretable mechanism how copying is encoded by self-attention
o One abstract (non-knowledge) ability critical to matching format, solving math

attention
Random Tokens Repeat of Random Tokens
Category 40 ids node SHfllgliOl ~ Category 40 ids jnode]Striiction|
prefix of attended-to-token Attended-to-token is copied. The corresponding
= current token [I88il is increased for the next token.

e Detailed analysis in the next lecture


https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

Do we reach consensus,
or do puzzles remain?



Open problems & research ideas

Ambiguity in the definition of emergent abilities? What really is emergence /
phase transitions? Critique: “Are Emergent Abilities of Large Language
Models a Mirage?”

Model, data diversity, and training steps may all have impact, suggested by
the PNAS theory paper. But analysis is limited.

Self-attention is viewed as meta-algorithm components capable of
implementing certain rules (mechanistic analysis), yet reverse engineering is
hard

In LLMs, the effects of training data is very poorly understood, since it is very
expensive to pretrain the model



https://arxiv.org/abs/2304.15004
https://arxiv.org/abs/2304.15004

