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Deep neural net is a composition of multiple layers
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DNNs generally represent hierarchical
features through layer composition



CNN: layers extract hierarchical features

e Soon after AlexNet in 2012, various studies
confirmed hierarchical feature

representations

o DeconvNets (see figure): pseudo-inverse map
o Activation maximization: what input maximizes a
feature

o Grad-CAM: gradient-based input sensitivity

e Lower layers encode wavelet / Gabor filters
e Higher layers encode more abstract
concept

Visualizing 9 randomly selected
feature maps in CNN

Layer 1-5

Visualizing and Understanding
Convolutional Networks, 2013



https://arxiv.org/pdf/1311.2901
https://arxiv.org/pdf/1311.2901

Hierarchical features throughout DL development

e Transfer learning & fine-tuning

(@)

e Autoencoders and GANs
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e The “magic” of feature learning
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Only top layers are optimized in

downstream tasks
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https://blog.keras.io/building-autoencoders-in-keras.html

Pre-DL methods are poor at hierarchical features

e Manual construction of nonlinear map

o For example, use rule-based heuristics to

compute features given an image or a sentence

e Kernel method

o Popularin 2000s, choice of kernel determines ‘P(ml) So(wj)
nonlinear map T T
e Not scale well with data and dimension T; T
o Not adaptive to data distribution Figure NOT edited by genAl

o Curse of dimensionality



Layerwise functionality of transformers

predict T; 1

e Autoregressive training: minimizing

i

— Anisotropy and the
"Layer Saturation" (?)

cross-entropy loss reduces mismatch between TF Layer L

Higher layers collect
— relevant features for
predicting next token
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prediction and actual next token
e The "Mid-Layer Bottleneck": Models build

TF Layer L-1

semantic rich features in earlier layers, target

next-token prediction in later layers TF Layer 2
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Layerwise analysis of embeddings in
transformers



How do transformer embeddings encode synthetics
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Syntax tree constructed from language models


https://en.wikipedia.org/wiki/Treebank
https://aclanthology.org/N19-1419.pdf

How do transformers FFNs encode knowledge

e Recall the key-value memory paper
o Use logit lens (projection to vocab using unembedding matrix) to interpret value vectors

e Early layers tend to trigger shallow concepts, later layers complex concepts

Key | Pattern Example trigger prefixes I. III
; Ends with “substitutes” At the meeting, E.lton said that “for artistic iteasons there could be no substitutes 80
In German service, they were used as substitutes

K9
(shallow) Two weeks later, he came off the substitutes

Military, ends with On 1 April the SRSG authorised the SADF to leave their bases 60 ..h !
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Transformer Feed-Forward Layers Are Key-Value Memories, 2021



https://arxiv.org/pdf/2012.14913

An intervention approach to interpreting embeddings

Distinct causal effects between early layers vs later layers, SA vs MLP

More in future lectures
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https://arxiv.org/pdf/2202.05262
https://arxiv.org/pdf/2202.05262
https://arxiv.org/pdf/2202.05262

Later layers tend to be additive

e Laterlayers computeamap h+— (¢, +id)o--- (¢, +id)o h
e Additivity means

(¢ +id) o (¢, +id) Z%ﬂd

e |Itis possible when ¢, = U, o ¢} o V] where (U,)are orthogonal and (V) are
orthogonal, i.e., “reading” and ertlng use orthogonal subspaces

1.0

e [Effects of early layers and later

layers tend to be decoupled
o Redundancy, pruning possible
o No complex high-order compositions

in later laters (a) Effect of skipping a layer on later layers’  (b) Effect of skipping a layer on later layers’
o Refinin gem beddin gs for P rediction contributions in the all timesteps. contributions in future timesteps.
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Do Language Models Use Their Depth Efficiently?, 2025



https://openreview.net/pdf?id=Kz6eUL86XP

Geometric view of layerwise effects

e Early layers: promote separability of concepts (not ready for prediction yet)
e Later layers: increase alignment with unembeddings, gradual angular

refinement of embedding
e Analogy: early layers extract high-order interaction like tensors, later layers

run a logistic regression on top of sophisticated features
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