

STAT 992: Science of Large Language Models

Lecture 7: Layerwise structures of embeddings

Spring 2026
Yiqiao Zhong

Deep neural net is a composition of multiple layers

- Input $h^{(0)} = x$
 - Image: $H \times W \times C$
 - Text: $T \times d$
- Left: pre-ResNet model (–2015)
$$h^{(\ell+1)} = f_\ell(h^{(\ell)})$$
- Right: post-ResNet model (2015–)
$$h^{(\ell+1)} = h^{(\ell)} + f_\ell(h^{(\ell)})$$
- Each layer “processes” the representation in the composition

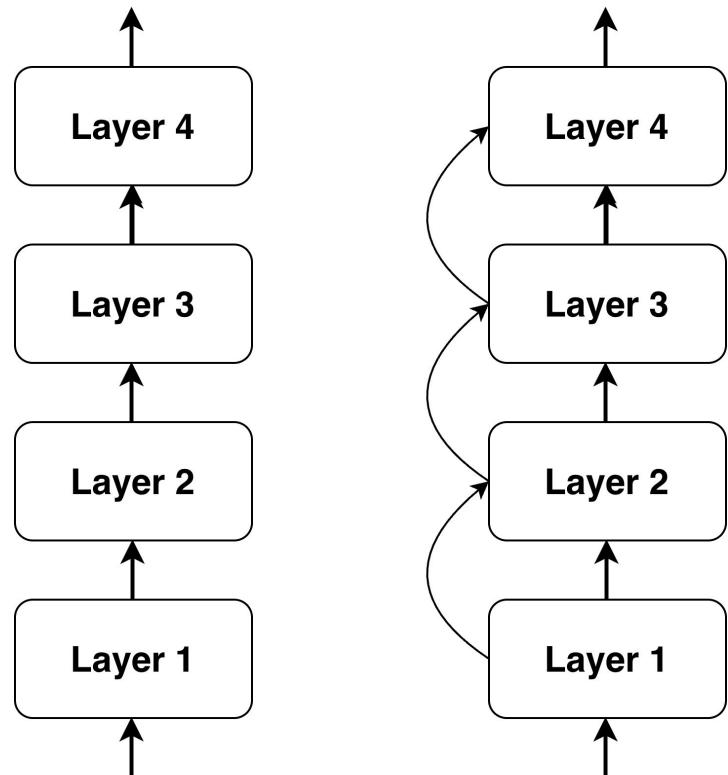
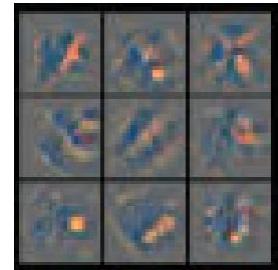
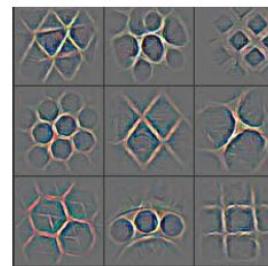
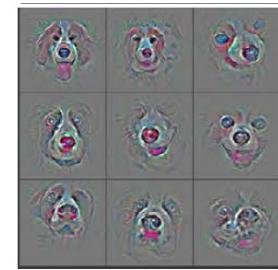
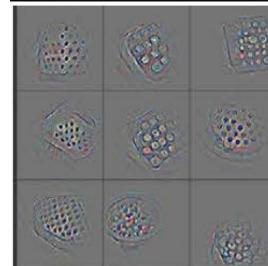


Figure NOT edited by genAI

DNNs generally represent hierarchical features through layer composition

CNN: layers extract hierarchical features

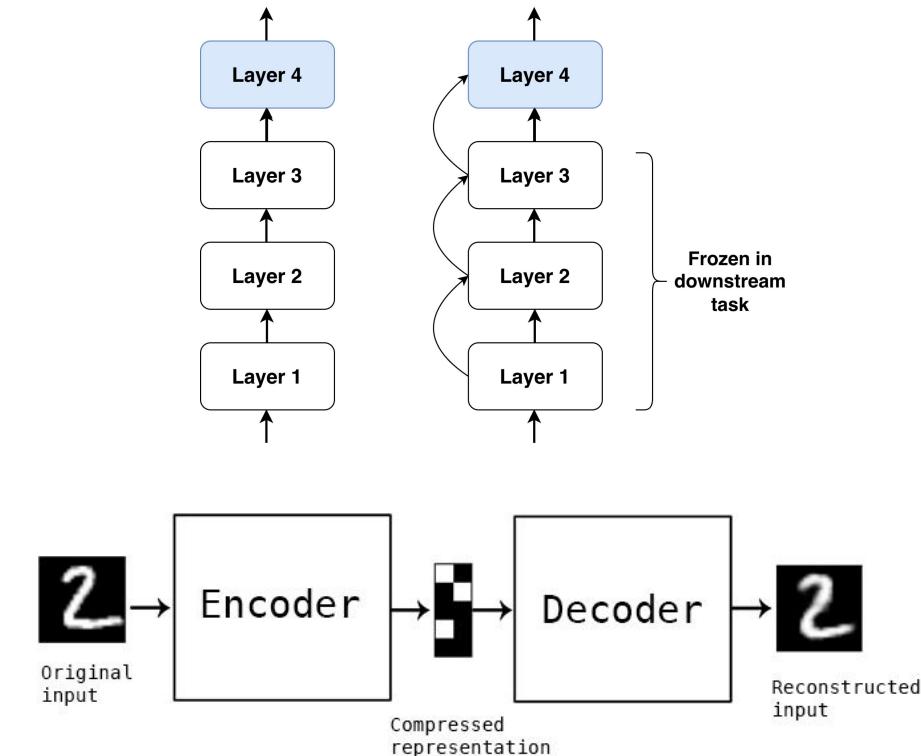
- Soon after AlexNet in 2012, various studies confirmed hierarchical feature representations
 - DeconvNets (see figure): pseudo-inverse map
 - Activation maximization: what input maximizes a feature
 - Grad-CAM: gradient-based input sensitivity
- Lower layers encode wavelet / Gabor filters
- Higher layers encode more abstract concept



Visualizing 9 randomly selected feature maps in CNN
Layer 1–5
[Visualizing and Understanding Convolutional Networks](#), 2013

Hierarchical features throughout DL development

- Transfer learning & fine-tuning
 - Only top layers are optimized in downstream tasks
- Autoencoders and GANs
 - Extracting High-level concept in latent space
- The “magic” of feature learning
 - DL models are not explicitly told to find meaningful features (most trained by minimizing a simple loss)
 - They find meaningful features anyway



Source: [link](#)

Pre-DL methods are poor at hierarchical features

- Manual construction of nonlinear map
 - For example, use rule-based heuristics to compute features given an image or a sentence
- Kernel method
 - Popular in 2000s, choice of kernel determines nonlinear map
- Not scale well with data and dimension
 - Not adaptive to data distribution
 - Curse of dimensionality

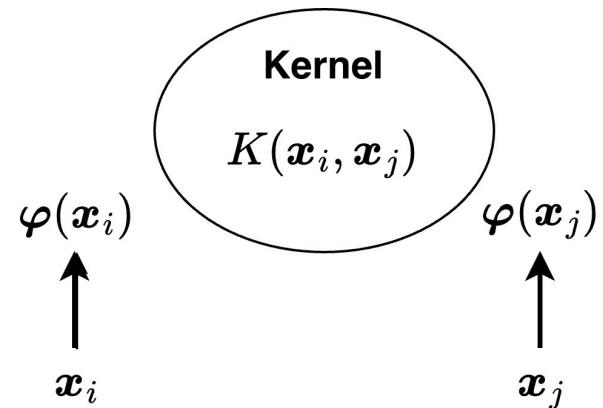
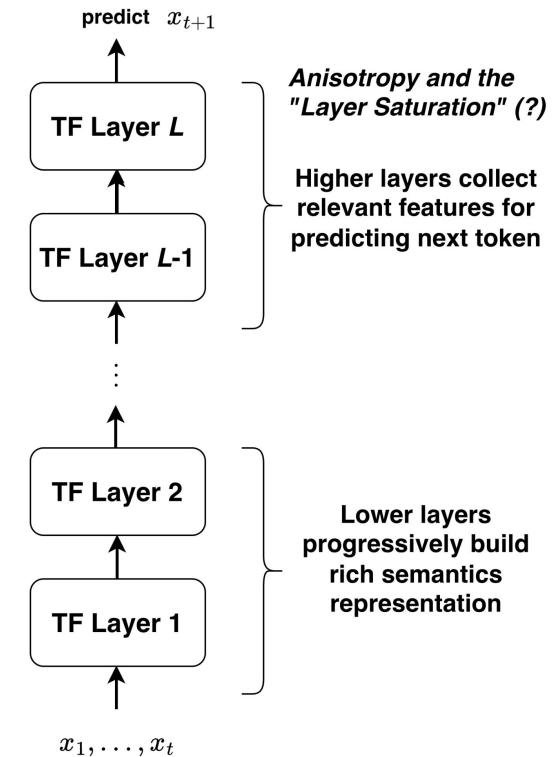


Figure NOT edited by genAI

Layerwise functionality of transformers

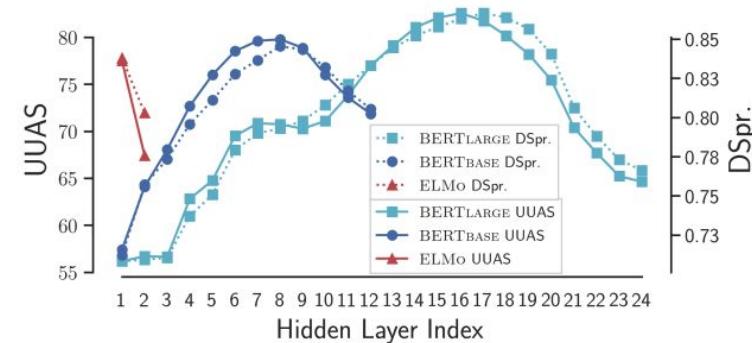
- **Autoregressive training:** minimizing cross-entropy loss reduces mismatch between prediction and actual next token
- **The "Mid-Layer Bottleneck":** Models build semantic rich features in earlier layers, target next-token prediction in later layers
- **Anisotropy in last few layers:** representations often become highly anisotropic, likely training artifact



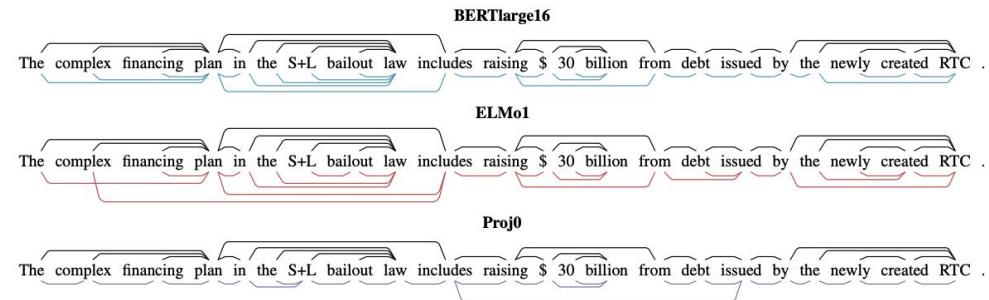
Layerwise analysis of embeddings in transformers

How do transformer embeddings encode synthetics

- Classical NLP has dedicated dataset with annotated syntax tree
- Use trained embeddings (hidden states) distance to construct syntax tree as model's representation of syntax
- Multiple layers help models to find more accurate syntax, peaking at a mid layer



[A Structural Probe for Finding Syntax in Word Representations](#), 2019

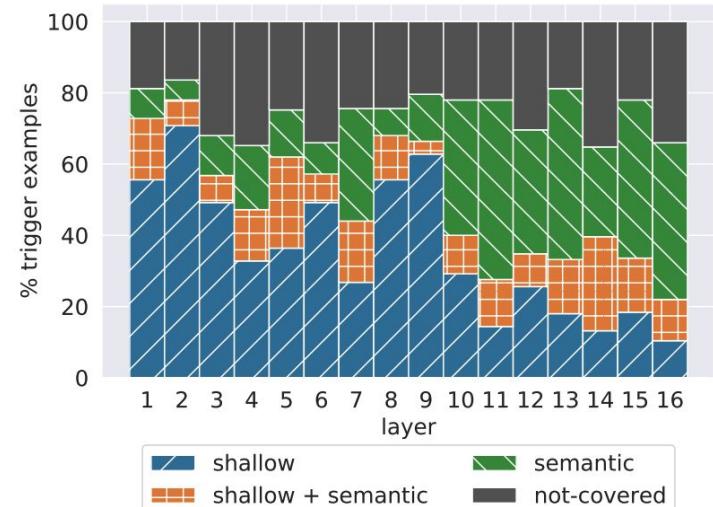


Syntax tree constructed from language models

How do transformers FFNs encode knowledge

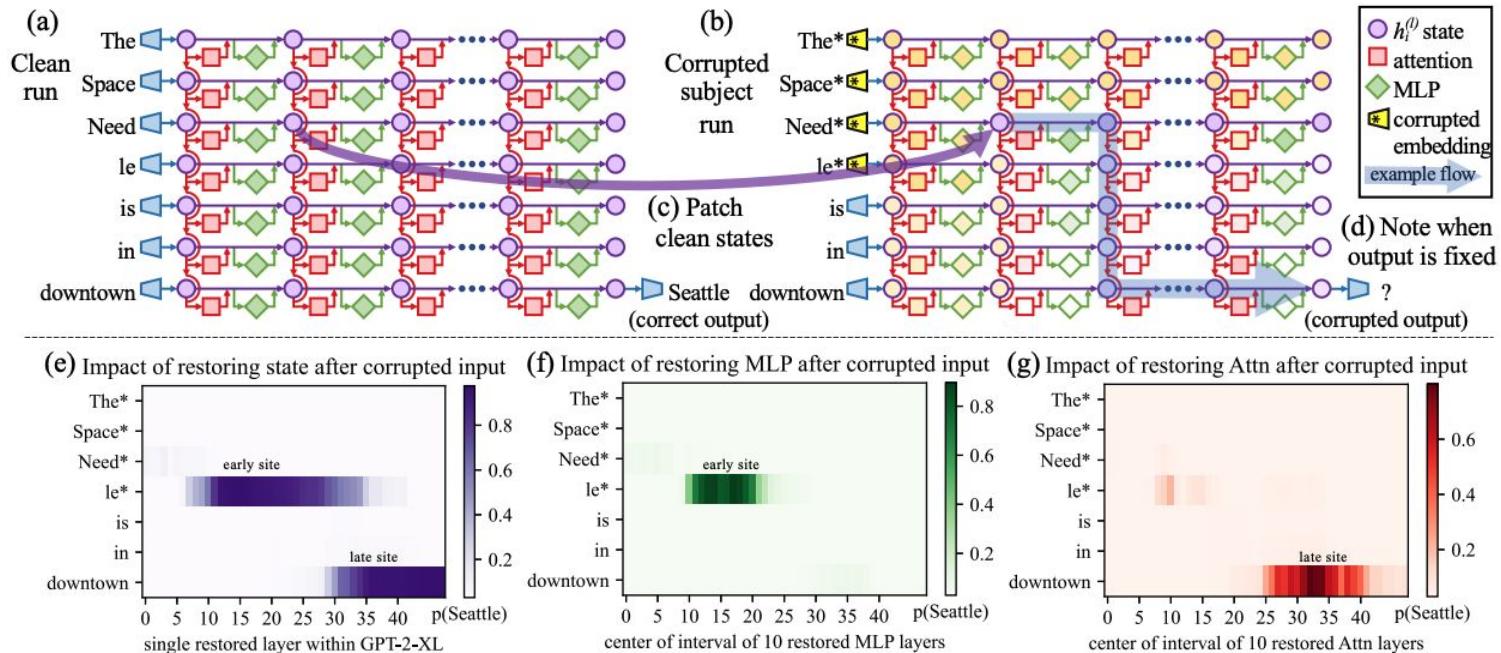
- Recall the key-value memory paper
 - Use logit lens (projection to vocab using unembedding matrix) to interpret value vectors
- Early layers tend to trigger shallow concepts, later layers complex concepts

Key	Pattern	Example trigger prefixes
k_{449}^1	Ends with “substitutes” (shallow)	<i>At the meeting, Elton said that “for artistic reasons there could be no substitutes In German service, they were used as substitutes Two weeks later, he came off the substitutes</i>
k_{2546}^6	Military, ends with “base”/“bases” (shallow + semantic)	<i>On 1 April the SRSG authorised the SADF to leave their bases Aircraft from all four carriers attacked the Australian base Bombers flying missions to Rabaul and other Japanese bases</i>
k_{2997}^{10}	a “part of” relation (semantic)	<i>In June 2012 she was named as one of the team that competed He was also a part of the Indian delegation Toy Story is also among the top ten in the BFI list of the 50 films you should</i>
k_{2989}^{13}	Ends with a time range (semantic)	<i>Worldwide, most tornadoes occur in the late afternoon, between 3 pm and 7 Weekend tolls are in effect from 7:00 pm Friday until The building is open to the public seven days a week, from 11:00 am to</i>
k_{1935}^{16}	TV shows (semantic)	<i>Time shifting viewing added 57 percent to the episode’s The first season set that the episode was included in was as part of the From the original NBC daytime version, archived</i>



An intervention approach to interpreting embeddings

- Distinct causal effects between early layers vs later layers, SA vs MLP
- More in future lectures

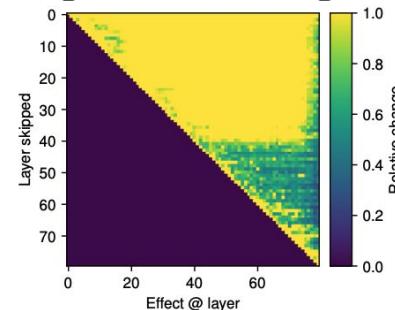


Later layers tend to be additive

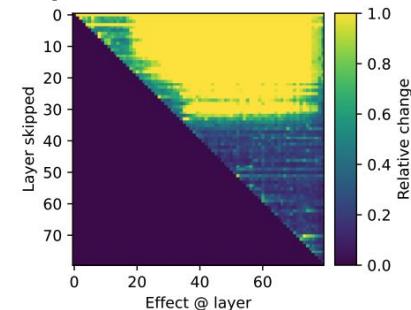
- Later layers compute a map $h \mapsto (\varphi_L + \text{id}) \circ \cdots (\varphi_\ell + \text{id}) \circ h$
- Additivity means

$$(\varphi_L + \text{id}) \circ \cdots (\varphi_\ell + \text{id}) \approx \sum_{k=\ell}^L \varphi_L + \text{id}$$

- It is possible when $\varphi_k = U_k \circ \varphi'_k \circ V_k^\top$ where (U_k) are orthogonal and (V_k) are orthogonal, i.e., “reading” and “writing” use orthogonal subspaces



(a) Effect of skipping a layer on later layers' contributions in the *all* timesteps.



(b) Effect of skipping a layer on later layers' contributions in *future* timesteps.

- Effects of early layers and later layers tend to be decoupled
 - Redundancy, pruning possible
 - No complex high-order compositions in later layers
 - Refining embeddings for prediction

Geometric view of layerwise effects

- Early layers: promote separability of concepts (not ready for prediction yet)
- Later layers: increase alignment with unembeddings, gradual angular refinement of embedding
- Analogy: early layers extract high-order interaction like tensors, later layers run a logistic regression on top of sophisticated features

